0 Hits

  • Previous / Next

You are using Science Of Synthesis as a Guest.
Please login or sign up for a free trial to access the full content. Enzymatic Oxidation of 4-Substituted Cyclohexanones

DOI: 10.1055/sos-SD-216-00079

de Gonzalo, G.; van Berkel, W. J. H.; Fraaije, M. W.Science of Synthesis: Biocatalysis in Organic Synthesis, (20153195.

Prochiral 4-substituted cyclohexanones are converted into the corresponding optically active ε-caprolactones 13 in Baeyer–Villiger reactions catalyzed by Baeyer–Villiger monooxygenases (BVMOs) expressed in E. coli cells. Cyclohexanones bearing various substituents have been employed for these syntheses, including halides, hydroxy groups, esters, and alkyl chains (Scheme 9). The biocatalysts most employed for the preparation of the lactones are cyclohexanone monooxygenase from Acinetobacter calcoaceticus (CHMOAcineto) and cyclopentanone monooxygenase from Comanonas sp. NCIMB 9872 (CPMOComa). For some compounds, depending on the Baeyer–Villiger monooxygenase used, a different enantiopreference is achieved, and both enantiomers of the final lactone are accessible. Cyclopentanone monooxygenase is able to oxidize substrates with ether O-substituents bigger than methyl with good results. This is in contrast to CHMOAcineto, which only accepts 4-methoxycyclohexanone. The biooxidation of those ketones substituted with bulky groups (R1 = t-Bu, Ph) is more efficient using a cyclohexanone monooxygenase from Xanthobacter sp. ZL5 (CHMOXantho), furnishing the corresponding (−)-lactones 13 with high yields and excellent enantioselectivities.

Meeeee 8 Meeeeeeeeeee ee Meeeeeeee 8-Meeeeeeeeee Meeeeeeeeeeeee[‌88‌‌88‌]

Meeeeeeeeee 8

M8 MMMMe Meeeeee ee (%) Meeee (%) Mee
M MMMMMeee M 88 88 [‌88‌]
Me MMMMMeeeeee M 88 88 [‌88‌]
MMe MMMMMeeeeee M 88 88 [‌88‌]
MMM8MM=MM8 MMMMMeee M 88 88 [‌88‌]
MMe MMMMMeee M 88 88 [‌88‌]
Me MMMMMeeeeee M 88 88 [‌88‌]
Me MMMMMeeeeee M 88 88 [‌88‌]
e-Me MMMMMeeeee e.e. ≥88 88 [‌88‌]
Me MMMMMeeeee e.e. 88 88 [‌88‌]

e MMMMMeee = eeeeeeeeeeeeee eeeeeeeeeeeee eeee Meeeeeeee ee. MMMMM 8888; MMMMMeeeeee = eeeeeeeeeeeee eeeeeeeeeeeee eeee Meeeeeeeeeeee eeeeeeeeeeeee MMMMM 8888; MMMMMeeeee = eeeeeeeeeeeee eeeeeeeeeeeee eeee Meeeeeeeeeee ee. MM8.

e e.e. = eee eeeeeeeeee.

Meeeeeeeeeee Meeeeeeee

(−)-8-Meeeeeeeeeee-8-eee (88, M8= Me):[‌88‌]

Meeee Meeee eeeee/eeeeeeeeee eeeeee (MMeee; 888 eM) eee eeeeeeeeee (8% e/e) eeee ee eeeeeeeee eeeeeeeeee ee eee M. eeee eeeeee eeeeeeeeee eeeeeeeeeeeee eeeeeeeeeeeee eeee Meeeeeeeeeee ee. MM8 (MMMMMeeeee) ee e eeeeeee Meeeeeeeee eeeee. Mee eeeeeee eee eeeeeeeee ee 888 eee eee ee 88 °M ee ee eeeeeee eeeeee eee 8–8 e. Meeee ee eeeeeee eeeeeee (MM888) ee 8.8–8.8 eee eeee eeeeeee, eeeeeeeee β-e-8-eeeeeeeeeeeeeeeeeeeee (MMMM) eee eeeee ee eeeeeee e eeeee eeeeeeeeeeeee ee 8.888 eM. 8-Meeeeeeeeeeeeeeeeee (88 ee, 8.88 eeee) eee eeeee eeee, eeeee eeee β-eeeeeeeeeeee (8 eeeee). Mee eeeeeee eee eeeeeeeee ee 88 °M eee 88 e eee eeee eee eeeeeee eee eeeeeee ee eeeeeeeeeeeeee. Mee eeeeeeeeeee eee eeeeeeeee eeee MeMe eee eeeeeeeee eeeeeeeeee eeee MeMMe. Mee eeeeeeee eeeeeee eeeeee eeee eeeee (Me8MM8) eee eeeeeeeeeeee, eee eee eeeee eeeeeee eee eeeee eeeeeeeeeeeeeee (eeeeee eee, eeeeeeeee eeeee/MeMMe 8:8) ee eeee eeeeeee 88 (M8 = Me) ee eeeeeeeee eeeeeeee; eeeee: 88 ee (88%); ee 88–88 °M; [α]M88 −88.8 (e 8.88, MMMe8); 88% ee.