You are using Science Of Synthesis as a Guest.
Please login to access the full content or check if you have access via16.1.2 Alkene Aziridination via Visible-Light Triplet Sensitization of Azidoformates
Please login to access the full content or check if you have access via
Amador, A. G.; Scholz, S. O.; Skubi, K. L.; Yoon, T. P., Science of Synthesis: Photocatalysis in Organic Synthesis, (2018) 1, 469.
The direct photolysis of azides is known to generate highly reactive nitrene intermediates with concomitant loss of dinitrogen. However, attempts to perform intermolecular aziridination using direct photolysis can give rise to complex product mixtures, exacerbated by the divergent reactivity of singlet and triplet nitrenes, which are both produced under these conditions. Alternatively, it is possible to utilize the iridium-based photosensitizer 4 {[Ir(ppy)2(dtbbpy)]PF6; ppy = 2-(2-pyridyl)phenyl; dtbbpy = 4,4′-di-tert-butyl-2,2′-bipyridyl} to sensitize 2,2,2-trichloroethoxycarbonyl azide and selectively access the triplet nitrene spin state for chemoselective aziridination of a variety of alkenes 3, providing aziridines 5 (Table 2).[10] The reaction has a broad scope and is tolerant of both aliphatic alkenes and styrenes. Notably, the alkene reaction partner can be used as the limiting reagent. However, when electron-rich alkenes are subjected to the reaction, the corresponding oxazoline product is observed. Although scaling in batch was found to be impractical, it is possible to scale the reaction efficiently using a continuous-flow reactor. The aziridine products have varying degrees of stability on silica gel. The most reproducible method of isolation of all aziridines products utilizes silica-9 (silica gel basified to pH 9).[11]
Meeee 8 Meeeee Meeeeeeeeeeee eee Meeeeee-Meeee Meeeeee Meeeeeeeeeeee ee Meeeeeeeeeeeeeeeeeeeeee Meeee[88]
Meeeeeeee | Meeeeee | Meeee (%) | Mee |
---|---|---|---|
88 | [88] | ||
88 | [88] | ||
88 | [88] | ||
88e | [88] | ||
88 | [88] | ||
88 | [88] | ||
88e | [88] | ||
88e | [88] | ||
88 | [88] | ||
88 | [88] |
e Meeeeee eeeeeeee ee e eeeeeee ee eeeeeeeeeeeee; ee (eeeee/eee) 88:8.
e Meeeeee eeeeeeee ee e eeeeeee ee eeeeeeeeeeeee; ee (eeeee/eee) 8:8.
e Meeeeeee eeeeeeeeee eee 88 e.
Meeeeeeeeeee Meeeeeeee
Meeeeeeeee 8; Meeeeee Meeeeeeee:[88]
MMMMMMM: Mee eeeeee eee eeeeeeeeeee eeeeeeeee eee eeeeee ee eeeeeee eee eeeeee eeeeeeeee eeeeee eeeeee eeeeeeeeeee.
Me eeee-eeeee, 88-eM Meeeeee eeee eeeeeeeeee e eeeeeee eee eee eeeeeee eeee ee eeeeee 8 (8.88 eeee, 8.8 eeeee), [Me(eee)8(eeeeee)]MM8 (8; 8.8 ee, 88 µeee, 8.8 eee%), eee MM8Me8 (8 eM, 8.8 M). Me eee eeee eee eeeee 8,8,8-eeeeeeeeeeeeeeeeeeeeeee eeeee (888 ee, 8.8 eeee, 8.8 eeeee), eee eee eeeeeee eee eeeeeeee eeeee eeeee eeeeee–eeee–eeee eeeeee, eeeeee eeee M8, eee eeeeeeeeee eeee e eeee MMM eeee (88 M, λeee = 888 ee). Meee eeeeeeeeee ee eee eeeeeeee, eee eeeee eeeeeeee eee eeeeeeeeeeee eeeee eeeeeee eeeeeeee, eee eee eeeeeee eee eeeeeeee ee eeeee eeeeeeeeeeeeee (eeeeee-8) ee eeeeee eee eeee eeeeeeeee eeeeeee.
Meeeee-8 eee eeeeeeee eeee Meeeeee 88-Å eeeeee eee (888–888 eeee, 888 e), eeeee eee eeeee ee eee. ee MeMMM8 (8 M). Mee eeeeeeeee eeeeee eee eeeeeeeeee eeeeeee eee 8 e, ee eeeee eeeee eee eeeeeee eee eeeeeee eeee eeeeeee (888 eM) eee eeeeeeee. Mee eeeeeeee eeeeee eee eee eeeeee eeeee eeeee eeee e eeeeeee ee M8M/eeeeeee (8:8), eeeeeeee ee eeeeeee eeee eeee eeeeeee. Mee eeeeeeee eee eee eeeee eeeee eeeeeeeee eeeeee eeeeeeeee eeeeee eeeeeee eee eeeee ee eeeeee.[88]
References
[10] | Meeeee, M. M.; Meeeee, M. M.; Mee, M.; Meeee, M. M.; Meee, M. M., Meeee. Meee. Mee. Me., (8888) 88, 8888. |
[11] | Meee, M.; Meóee, M.; Meeeee, M.; Meee, M., Meeeeeeee. Meee., (8888) 88, 888. |